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Abstract. In this paper we address the different regimes of quantum degeneracy in a one-dimensional
Bose gas taking into consideration some parameters that are readily accessible in the experiment. We pay
particular attention to the tunability of the trap anisotropy and the number of particles in the system.

PACS. 05.30.Jp Boson systems – 32.80.Pj Optical cooling of atoms; trapping – 67. Quantum fluids and
solids; liquid and solid helium – 03.75.Nt Other Bose-Einstein condensation phenomena

1 Introduction

The early studies of low-dimensionality issues in Bose
gases were constrained due to the difficulty in realising
such systems experimentally. However, with the rapid
progress in cooling techniques and the possibility of tightly
confine the motion of trapped particles in one or two di-
rections to zero point oscillations, we are facing a sce-
nario where these systems can be actually observed. Some
experiments have shown realistic possibilities of creating
two- (2D) and one-dimensional (1D) trapped gases [1–4]
and achieve quantum degeneracy in these systems. In par-
ticular, 1D Bose systems can be formed in atomic inte-
grated optics devices [5], atomic waveguides [6] or elon-
gated atomic traps [7,8].

The interest in low dimensional Bose systems has
been increasing because of recent spectacular experimen-
tal advances in cold atoms. Particularly fascinating is the
fermionisation of the system in the strongly interacting
regime, namely the Tonks-Girardeau gas [9,10]. In a recent
experiment, Paredes et al. [11] have reported the observa-
tion of a strongly interacting gas of rubidium atoms in a
two-dimensional optical lattice. The strong interaction is
reached by adding a third lattice potential along the long
axis of the system. This extra potential increases the ef-
fective mass of the atoms and thus enhances their interac-
tions. This unprecedented achievement has opened up the
possibility of studying all the different regimes of quantum
degeneracy that have been identified for a trapped Bose
gas confined in one dimension [12]. Generally speaking,
these regimes are characterised by the small parameter of
the system defined as the ratio between the strength of
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the interaction (in 1D) I = ng1D and the kinetic energy
K = (�n)2/m, namely [12,13]:

γ =
mg1D

�2n
, (1)

where m is the mass of the particles, n is the number
density and g1D is the one-dimensional coupling strength.
The system is in the weakly interacting regime for γ � 1,
whereas we enter the Tonks-Girardeau regime for γ � 1.
We would like to point out that in this paper we are mainly
interested in the quantum degenerate regimes of the sys-
tem. A discussion about general conditions for a gas to be
described as one-dimensional can be found in [14–16].

Let us consider a system of N bosonic atoms confined
in an elongated trap where the two tightly confined di-
rections are characterised by the frequencies ω⊥ and ωz

in the transverse and longitudinal directions, respectively.
We define the trap anisotropy as the ratio between these
two frequencies λ = ωz/ω⊥. Therefore, there are two char-
acteristic harmonic oscillator lengths L2

⊥ = �/mω⊥ and
L2

z = �/mωz. When the trap anisotropy is much smaller
than unity, the geometry of the trap is highly elongated.
Olshanii has derived expressions for the 1D scattering am-
plitude and effective 1D interaction potential for atoms
confined in traps of this kind [17]. In terms of the radial
extension of the trap, the coupling strength g1D can be
expressed as

g1D = − 2�
2

ma1D
, (2)

with

a1D = −L
2
⊥
a

(
1 − aC√

2L⊥

)
, (3)

where, C = lims→∞
(∫ s

0
ds′/

√
s′ − ∑s

s′ 1/
√
s′

)
=

1.4603... and a is the three-dimensional scattering length.
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The terms that depend on C correspond to transverse
renormalisation effects, and are important only in the case
where |a| � L⊥, otherwise the coupling strength can be
expressed as g1D = 2a�2/mL2

⊥. If we substitute this cou-
pling strength into equation (1) the expression for the
small parameter of the system is given by

γ =
2amω⊥

�n
. (4)

Notice that the small parameter γ is inversely proportional
to the square of the radial extension of the wavefunc-
tion. From the above equation it is clear that, for a given
number density n, we can change between the weakly
and strongly interacting regimes by modifying the scat-
tering length (e.g. via Feshbach resonances [18]) and/or
the radial frequency of the trap [19]. Alternatively, it is
also possible to modify the effective mass of the atoms as
demonstrated in a recent realisation of a Tonks-Girardeau
gas [11]. In this paper, we provide a further analysis of the
quantum degenerate regimes considering some parameters
that can be adjusted in the experiment. In particular we
concentrate on the tunability of the radial frequency con-
finement provided by the experimental set-up [19] and the
number of particles in the system. We present a compar-
ison of some of the main length scales involved in the
problem, namely the mean interparticle distance Lp, the
correlation length [20,21] Lc = �/

√
nmg1D, the radial and

longitudinal harmonic oscillator lengths. We re-express
some well-known results in terms of variables that can
be readily manipulated.

We show that in the boundary where the gas stops
having a three-dimensional (3D) behaviour and starts be-
coming one-dimensional, the correlation length is equal to
the radial extension of the wavefunction. This turns out to
be equivalent to having an interparticle separation of twice
the three-dimensional scattering length a. In the same
way, when we change from the one-dimensional weakly
interacting regime (γ � 1) to the strongly interacting one
(γ � 1), the radial and the longitudinal extensions of the
wavefunction are equal and the mean interparticle separa-
tion is inversely proportional to the 3D scattering length.
The paper is organised as follows: in Section 2 we define
and describe the parameters that characterise the different
regimes of quantum degeneracy in a one-dimensional Bose
gas. Section 3 presents a classification of the degeneracy
regimes in terms of the main length scales in the system.
Finally in Section 4 we discuss some finite temperature
effects that modify the system.

2 Regimes of quantum degeneracy
in one-dimensional Bose systems

2.1 Weakly interacting regime

The nature of the quantum degenerate regimes in a
trapped 1D gas is strongly influenced by the interparticle
interaction and by the presence of the trapping potential.

Considering a cylindrical trap, at sufficiently low temper-
ature T , the radial motion of the particles is “frozen” and
is governed by the ground-state wavefunction of the ra-
dial harmonic oscillator. In a harmonically trapped 1D gas
the temperature of quantum degeneracy is Td � N�ω⊥.
If the radial extension of the wavefunction is much larger
than the radius of interatomic potential, the interaction
acquires a 3D character. The decrease of temperature con-
tinuously transforms a classical 1D gas to the regime of
quantum degeneracy. At T = 0 this weakly interacting gas
turns into a true Bose-Einstein condensate [12], which is
defined as a condensate in which both phase and density
fluctuations are suppressed. In the Thomas-Fermi approx-
imation the maximum number density is given by

n
(TF )
0 =

1
g1D

(µ− Vtrap(0)) , (5)

where µ is the chemical potential and Vtrap(z) =
mω2

zz
2/2. From the normalisation condition of the num-

ber density, we can find a relationship between the total
number of particles in the system and the chemical poten-
tial µ = 1

4

(
3
√

2mNg1Dωz

)2/3
. Following Petrov [12], we

define a dimensionless parameter

α =
mg1DLz

�2
=

2a
λLz

, (6)

which is closely related to the anisotropy of the trap and
imposes some conditions on the number of particles. As
such, this parameter is related to a critical number of par-
ticles that allows us to classify the different regimes in the
system. For instance, Petrov et al. mention that in the
case for α � 1, the number of particles has to be greater
than N∗ = α2 [12]. In the case in which α is equal to
unity, we are exactly in the region in which the system is
neither bosonic nor fermionic. We point out at that the
descriptions we are dealing with in this paper are in terms
of either bosonic theory in the weakly interacting regime
or fermionic theory in the strongly interacting one.

The chemical potential can be expressed as

µ = �ωz

(
3Nα
4
√

2

)2/3

. (7)

In order to be in the Thomas-Fermi (TF) regime, the
chemical potential has to be greater than the level spacing
of the trap. For α � 1, the weakly interacting regime is
met at any number of particles, and will be described by
the TF approximation for all

N � N
(TF )
min

∣∣∣
α�1

=
2
√

2
3

λLz

a
. (8)

In the case when α � 1, the system will always be in
the TF regime. Using the Thomas-Fermi approximation,
the number density at the trap centre can be calculated
as nmax = µ/g1D and therefore the small parameter is
expressed as

γ =

(
4
√

2
3

α2

N

)2/3

. (9)
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Fig. 1. Number of particles as a function of the trap
anisotropy λ, with ωz = 2π × 20 s−1 at T = 0 for a sys-
tem of rubidium atoms. The system has a minimum number
of atoms given by the crossing of the two curves for Nmin. The
region enclosed by the curves for Nmin and Nmax correspond
to a 1D system. The Tonks-Girardeau regime is achieved for
tighter confinement. Notice that the more particles we have in
a Tonks-Girardeau gas, the tighter the confinement has to be.

From this expression one easily finds that the minimum
number of atoms needed to stay in the weakly interacting
region of a bosonic mean field is

N
(TF )
min

∣∣∣
α�1

=
16

√
2

3λ

(
a

L⊥

)2

. (10)

Notice how this number of atoms is inversely proportional
to the trap anisotropy. In Figure 1, the number of parti-
cles as a function of the anisotropy1 is shown for a sys-
tem of rubidium atoms with a fixed longitudinal frequency
of ωz = 2π × 20 s−1. We include a wide range of val-
ues for the trap anisotropy λ for completeness. Notice
that to ensure that α � 1, the value of the anisotropy
needs to be smaller than 4.9 × 10−3, in which case we
will have a (weakly interacting) Bose gas in the Thomas-
Fermi regime, which in our case means that the radial
frequency has to be greater than 2π × 4.06 × 103 s−1. In
the case where α � 1, the minimum number of atoms
in the system is given by the crossing of the two curves
labelled “Nmin 1DTF” which is approximately 2 in this
case. However, in a realistic scenario, we need a larger
number of particles. We have mentioned above that we
are in the TF regime if the chemical potential is greater
than the level spacing. In Figure 2 we show the behaviour
of the chemical potential normalised to the level spacing of
the trap as a function of the trap anisotropy for different
number of particles (N = 6, N = 10 and N = 3000). Let
us concentrate in the case for N = 6; it is clear that when
the anisotropy is greater than 1 × 10−2 the TF condition
is not met, since the normalised chemical potential goes

1 Figures are plotted in log-log scale.
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Fig. 2. Chemical potential for systems with different number
of particles (N = 6, N = 10 and N = 3000) as a function of the
trap anisotropy λ. The curve labelled N for α � 1 represents
the boundary for the one-dimensional Thomas-Fermi gas.

below 1. Notice that the 1D weakly interacting gas with a
TF profile in the longitudinal direction exists only in the
region above the curve labelled “Nmin 1DTF (α � 1)”.
Therefore only this region can be accurately described by
the Thomas-Fermi approximation. This can be easily seen
if we calculate the value that the small parameter takes
below this region. Let us consider the curve for N = 6,
the system will enter the strongly interacting regime for
anisotropies smaller than 2.75 × 10−3, in such a case, the
small parameter given by equation (9) is γ = 1.0077, and
therefore we are on the boundary between the strongly
and the weakly interacting regimes. In the case of larger
number of particles, for instance N = 3000, we are well
into the 1D gas description for a wide range of values for
the trap anisotropy.

So far we have considered only the axial frequency
in the system. However, to be in the one-dimensional
Thomas-Fermi (1DTF) regime, the chemical potential will
have to be small compared to the radial frequency of the
trap. In other words,

µ

�ω⊥
= λ

(
3Nα
4
√

2

)2/3

� 1. (11)

This implies that a system with N = 1000 particles
will be into the 1D regime for values of the anisotropy
smaller than λ = 0.92; if the longitudinal frequency is
fixed to ωz = 2π × 20 s−1, then the radial frequency
to fulfil the 1D condition will have to be greater than
ω⊥ = 2π×21.63 s−1. This imposes a significant constraint
on the maximum number of particles for the system to be
described by the 1DTF approximation:

N � N (TF )
max =

2Lz

3a

√
2
λ
, (12)

which is also plotted in Figure 1. The area delimited by
the curves for Nmin and Nmax, correspond to the number
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of particles needed to have a one-dimensional system as
a function of the trap anisotropy λ. This means that
the number of particles in the 1D system is bounded
as Nmin < N < Nmax, where Nmin depends on the
value of the dimensionless parameter α. For a trap with
an anisotropy λ = 4 × 10−3 (α > 1), we will need be-
tween 3 and 6000 particles approximately to be in the
one-dimensional weakly interacting regime.

2.2 Strongly interacting regime

As we have discussed, the strongly interacting regime is
achieved when the small parameter of the system is greater
than one. In the previous section we have seen that in the
case in which α � 1, the weakly interacting condition is
satisfied at any number of particles so long it is greater
than N

(TF )
min

∣∣∣
α�1

. Therefore, we have to concentrate in the

case where α� 1.
It is well-known that in the strongly interacting regime,

the gas is actually a Tonks-Girardeau gas whose den-
sity profile can be calculated using the Bose-Fermi map-
ping [10]. The density for a gas under cylindrical confine-
ment in the Tonks-Girardeau regime corresponds to the
profile of a gas of non-interacting fermions [22], the max-
imum density at the centre of the cloud is then given by

n
(TG)
0 =

√
2N
πLz

. (13)

The small parameter can then be written in terms of the
dimensionless parameter α as

γ(TG) =
απ√
2N

=
2aπ√

2NλLz

. (14)

This implies that the maximum number of particles
needed to stay in the Tonks-Girardeau (TG) regime
must be

N (TG)
max =

2
λ

(
πa

L⊥

)2

. (15)

We point out the clear relationship between the maximum
number of particles in the Tonks-Girardeau limit given
by equation (15) and the minimum N in the Thomas-
Fermi limit given by equation (10). The discrepancy in
the prefactor between both expressions comes from the
fact that the calculations are considering the system to be
well inside the Tonks-Girardeau gas (fermionic theory) or
the Thomas-Fermi description (bosonic theory), respec-
tively. In Figure 1 we have plotted the number of particles
as a function of the trap anisotropy, notice the gap be-
tween the 1D and TG regimes. When the system is in the
Tonks-Girardeau regime, the number of atoms must be
high enough to ensure its peculiar behaviour. This require-
ment leads to the trivial condition that we need more than
one atom in the system [23]. In our case, equation (15) is
only meaningful for α � 1. This means that, within this
theoretical frame we can ensure a noticeable non-ideal be-
haviour of the TG gas, when the number of particles is
greater than N (TG)

min = π2/2 � 5.

From Figure 1, it is clear that the Tonks-Girardeau
regime is achieved for smaller values of the anisotropy
(very tight confinement) and lower number of particles
than for the 1D or 3D cases. It is clear that the confine-
ment has to be tighter if we want a larger number of par-
ticles in the Tonks-Girardeau gas. It is worth mentioning
at this point the remarkable experiment the demonstrates
the possibility of entering the strongly interacting regime
in a 1D degenerate gas with values of γ ranging from 5 to
200 [11].

3 Classification in terms of length scales

In the previous section, we have described some impor-
tant quantities that determine the behaviour of a one-
dimensional Bose gas. As we have seen, the number of
particles plays an important role in the description of the
system. However, that is not the only option we have to
manipulate it. From the definition of the small parame-
ter, it can be seen that we can change the atoms used
in the experiment or their scattering properties (e.g. us-
ing Feshbach resonances). In such a case, this implies that
we are effectively changing the coupling strength g1D. We
can also modify the trap anisotropy or modify the effective
mass of the atoms as shown in the experiment by Paredes
et al. [11]. In that work, the Tonks-Girardeau gas has been
obtained in a two-dimensional optical lattice with the ad-
dition of an extra periodic potential in the longitudinal
direction which effectively increases the value of γ. It is
particularly interesting to note that since they are using
optical lattices, their small parameter is written in terms
of the on-site interaction energy U and the tunnelling am-
plitude J . In any case, whatever the route we choose to
modify the coupling strength, the changes are related to
both the radial and longitudinal lengths of the system, and
to the correlation length and the interparticle separation.
In this section we give an account of the different regimes
in the system in terms of length scales as a function of the
number of particles and the trap anisotropy.

In the weakly interacting one-dimensional regime
at T = 0, we have a true Bose-Einstein condensate
(BEC) [12]. The Gross-Pitaevskii equation (GPE) pro-
vides us with a good description of the condensate wave-
function, which in the Thomas-Fermi approximation gives
us the well-known parabolic density profile

n(TF )(z) =
µ

g1D

[
1 −

(
z

RTF

)2
]
, (16)

where µ is given by equation (7) and RTF =
√

2µ/mω2
z

is the size of the atomic cloud and can be written as

RTF =
(

3L2
zNa

λ

)1/3

. (17)

The interparticle separation at the centre of the atomic
cloud can be expressed as

L(TF )
p =

4
3

(
3L2

za

N2λ

)1/3 (
1 − aC√

2L⊥

)−1

. (18)
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In the case of strong confinement, we can neglect the terms
that depend on C, as discussed in the first section. The
correlation length for the weakly interacting system is

L(TF )
c =

√
2

3

(
9L4

zλ

Na

)1/3

. (19)

At the crossover between the 3D and the 1DTF gas the
number of particles is given byN (TF )

max . When we substitute
this number in the expressions for the main length scales,
it is easy to see that the correlation length is equal to the
radial size of the wavefunction (L(TF )

c = L⊥). This is quite
natural, when the correlation length is greater than the
radial size, the macroscopic wavefunction is frozen in the
radial direction and we are indeed in the 1D regime. Curi-
ously, this is equivalent to having an interparticle separa-
tion given by L(TF )

p = 2a
(
1 − aC/

√
2L⊥

)−1
. This partic-

ular value comes from the pseudo-potential approximation
used to calculate the atomic scattering in very elongated
traps [17]. The mean interparticle separation is related to
the 1D density as Lp = n−1 [12]. In the case of rubidium
in a very elongated trap, Lp = 2a = 10.4 nm, giving us a
1D number density of 9.61 × 108 m−1. We would like to
emphasize that the intricate interplay between the number
of particles, the trap anisotropy and the scattering length,
to name a few, allows us to comply with these conditions.

In the three-dimensional description of a dilute Bose
gas, condensation occurs when the thermal de Broglie
wavelength becomes comparable to the mean interparti-
cle separation [24], which in turn must be larger than the
range of the potential (diluteness condition). For binary
collisions to happen, the atoms will have to be at a dis-
tance within the range of the interatomic potential. These
collisions are then better described as waves diffracting
off small obstacles and the process is characterised by the
scattering length a. When we decrease the number of par-
ticles in an elongated trap, the mean interparticle spacing
gets larger. In the crossover region, when the number of
particles reaches the value N (TF )

max , the wave scattering de-
scription has to account for the one-dimensional nature of
the system.

At the boundary with the Tonks-Girardeau gas the
number of particles in the system is given by the ex-
pression for N

(TF )
min

∣∣∣
α�1

and the correlation length and

the interparticle separation take the same value L(TF )
c =

L
(TF )
p = L2

⊥/2a, which we call the Tonks-Girardeau
boundary. Thus, we have upper and lower bounds for the
length scales in the 1DTF description

2a � L(TF )
p � L2

⊥
2a

, (20)

L⊥ � L(TF )
c � L2

⊥
2a

. (21)

Notice that these conditions depend only on the scatter-
ing length and the radial extension of the harmonic os-
cillator. In what follows, we consider the longitudinal fre-
quency fixed to a value of 2π × 20 s−1. In Figure 3, we
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Fig. 3. Main length scales of the system along with the upper
and lower bounds for the Thomas-Fermi gas for two different
anisotropies (a) λ = 0.2 and (b) λ = 4×10−3. We have marked
the regimes of the gas as described by the inequalities for the
interparticle separation Lp.

have plotted the main length scales of the system along
with the upper and lower bounds given above for two dif-
ferent anisotropies (a) λ = 0.2 and (b) λ = 4 × 10−3. For
the interparticle separation, the region contained between
“2a” and “TG Boundary” corresponds to a gas described
by the GPE and the density profile is that of a Thomas-
Fermi gas. In the case of the correlation length, the cor-
responding zone is between “L⊥” and “TG Boundary”.
Below this region, we are in the three dimensional regime
and above it we have a Tonks-Girardeau gas. Notice that
the intersections of the interparticle separation and the
correlation length with the bounds happens at the same
number of particles. In Figure 3a, we can see that accord-
ing to the behaviour of the interparticle distance Lp, we
are in the 3D gas for large number of particles. When this
number decreases we enter the 1D regime, since we are in
the region mentioned above. However, for smaller values
of the trap anisotropy, the 1D region allows us to enter the
Tonks-Girardeau regime, as can be seen by the curves for
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the interparticle distance and the correlation length going
above the Tonks-Girardeau boundary in Figure 3b.

3.1 Strongly interacting regime

The Tonks-Girardeau regime has the counterintuitive
characteristic that the system seems to become more in-
teracting when the number density is lower. This can be
seen from the definition of the small parameter given by
equation (1). From the condition that γ � 1 we obtain
that the interparticle distance is inversely proportional
to the interaction strength, L(TG)

p � �
2/mg1D. From

equation (13), the interparticle separation in the Tonks-
Girardeau gas is L(TG)

p = πLz/
√

2N and the size of the
cloud is RTG =

√
2NLz. The correlation length is given by

L(TG)
c =

√
πλ

a

(
L6

z

8N

)1/4

. (22)

Let us consider the system as a chain of N particles ar-
ranged in a line of a given length. If the number of particles
decreases, the average distance between them is larger and
we can achieve the TG gas in the case in which the previ-
ous conditions are met. Another possibility to achieve the
same result is to change the trap anisotropy, which will al-
low for more particles to form the TG gas. In this respect,
we think that calling this regime “strongly interacting”
can be misleading. In principle it is possible to change the
interaction strength, for instance, by modifying the scat-
tering length. However, this is not the only possibility we
have. We can take a fixed value for the parameter g1D, and
we can change either the number of particles, the aspect
ratio of the trap or, as it has been demonstrated in [11], the
effective mass of the atoms. In the TG regime the system
acquires a fermionic character in the sense that whenever
two bosons occupy the same position, their wavefunctions
vanish, which is only possible in one-dimensional systems.
In 2D or 3D systems with N particles, we can hold N − 1
of them fixed and move the remaining one throughout the
system without encountering any of the fixed particles,
but in 1D the motion of this particle is blocked by the
rest. According to this description, the TG gas is similar
to a gas of non-interacting fermions, for example a gas of
free electrons in one-dimension. An electron of mass me is
confined in a line of length L by infinite barriers and its
wavefunction ψn(x) is a solution of the Schrödinger equa-
tion Ĥψ = Eψ. When we accommodate N electrons on
this line, we have to take into account the Pauli exclusion
principle. In other words, each orbital can be occupied
at most by one electron. A pair of orbitals labelled with
the quantum number n can accommodate two electrons,
one spin up and one with spin down. In the same way,
the atoms in a Tonks-Girardeau gas will have to “interact
strongly” to mimic the behaviour imposed in the fermionic
case by the exclusion principle, avoiding collisions and pre-
venting their wavefunctions from vanishing.

In the regime of strong interactions, the correlation
length is much smaller than the mean interparticle sep-
aration. Thus, at the crossover from the 1DTF gas to
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Fig. 4. For a trap anisotropy λ = 2 × 10−4, the Tonks-
Girardeau gas can be achieved for greater number of particles.
Notice that in the regime of strong interactions the correlation
length is smaller than the interparticle distance.

the strongly interacting regime (N = N
(TG)
max ), the correla-

tion length is equal to the interparticle distance (L(TG)
c =

L
(TG)
p ), equivalently

{
L(TG)

c , L(TG)
p

}
� L2

⊥
2a

. (23)

Figure 4 shows the length scales of the system as a func-
tion of the number of particles for a smaller value for the
trap anisotropy (λ = 2 × 10−4). It is clear that we can
attain the strongly interacting regime for a larger number
of particles than in the previous cases and therefore there
are better chances to observe this phase experimentally.
We also point out that the region that describes the 1D
weakly interacting gas gets narrower and this situation
will be discussed below.

In Figures 5 and 6, we have plotted the main length
scales in the system as a function of the trap anisotropy
(ωz = 2π × 20 s−1) for (a) N = 1 × 103 particles and (b)
N = 1 × 104 particles, respectively. For the weakly inter-
acting case (in Fig. 5), the region for the 3D gas is marked
by the intersection of the correlation length Lc and the ra-
dial size L⊥. To the left of this region the system becomes
1D and to the left of the TG boundary we have a Tonks-
Girardeau gas. The range of values for the trap anisotropy
in which the gas has three-dimensional characteristics is
bigger for larger number of particles (see Fig. 5b). This
means that the one-dimensional Thomas-Fermi gas will
be attained more easily when the system has less particles
(see Fig. 5a).

For the sake of clarity, we have plotted the strongly
interacting counterpart of the system in Figure 6a for N =
1× 103 particles and Figure 6b for N = 1× 104 particles.
As expected, the TG boundary is given by the intersection
of the interparticle distance and the correlation length. We
point out that the change in the number of particles only
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Fig. 5. Main length scales for a weakly interacting system of
rubidium atoms in an elongated trap (ωz = 2π × 20 s−1) as a
function of the trap anisotropy, for (a) N = 1 × 103 particles
and (b) N = 1 × 104 particles, respectively. Notice that for
smaller number of particles in the system, the range of val-
ues for the trap anisotropy that satisfy the one-dimensional
conditions is larger.

shifts slightly the boundary of the transition. From this
discussion, we can understand the crossing of these length
scales to indicate a transition from one degenerate regime
to another one.

It is particularly interesting to see what happens when
we match the boundary conditions described above for
the weakly and strongly interacting cases, which implies
that the 1D Thomas-Fermi region collapses. Referring to
Figures 3 and 5, this corresponds to having Lp = Lc = L⊥,
which implies that the radial frequency is given by

ω
(3D→TG)
⊥ =

�

4a2m
, (24)

this is equivalent to a trap anisotropy given by
λ(3D→TG) = 4a2/L2

z. Figure 7 shows this situation for
the system we have been considering. In this case, we go
directly from the three-dimensional gas into the Tonks-
Girardeau regime. For a system of rubidium atoms with
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Fig. 6. Main length scales for a strongly interacting system of
rubidium atoms in an elongated trap (ωz = 2π × 20 s−1) as a
function of the trap anisotropy, for (a) N = 1 × 103 particles
and (b) N = 1× 104 particles, respectively. The change in the
number of particles shifts the boundary between the Tonks-
Girardeau gas and the 1D Thomas-Fermi gas only slightly.

a longitudinal frequency ωz = 2π× 20 s−1, we will need a
radial frequency of approximately 2π × 830 × 103 s−1 to
enter the Tonks-Girardeau regime without having a one-
dimensional Thomas-Fermi gas and the number of parti-
cles will have to be smaller than N (TF )

max = N
(TF )
min � 78000.

For greater radial frequencies, equations (20) and (21) are
not valid anymore.

4 Finite temperature effects

In the discussion of Sections 2 and 3, we have examined the
quantum degenerate regimes of a gas of ultracold bosons
overlooking the role of temperature; in other words we
have considered the case in which T = 0. Nevertheless,
temperature is a crucial parameter in the description of
the system. For instance at very low temperatures, the
phase fluctuations in the system can be suppressed and
we will end up with a true BEC [12,25]. Generally speak-
ing, we can identify three different regimes at tempera-
tures T � Td, where Td = N�ωz/kB is the degeneracy
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Fig. 7. Main length scales for a system of rubidium atoms
in an elongated trap, with the longitudinal frequency ωz =
2π × 20 s−1. When the trap anisotropy reaches a value λ =
2.41 × 10−5, we have a transition directly from the 3D gas to
the Tonks-Girardeau gas. This corresponds to having Lp =
Lc = L⊥.

temperature and kB = 1.3807 × 10−23 J/K is the
Boltzmann constant. In the case of the one-dimensional
Thomas-Fermi gas, by lowering the temperature we can
suppress fluctuations in both phase and density, leading
to the existence of a true Bose-Einstein condensate. For
a certain temperature, phase fluctuations will still remain
in the system giving rise to a quasi-condensate phase [12],
the characteristic temperature in this case is given by

Tφ = 2Td

(
λLz

3Na

)2/3

. (25)

The Tonks-Girardeau gas will be achieved for any temper-
ature much smaller than Td but only when the number of
particles is small enough, and that number depends on
the trap anisotropy as shown in Figure 1. The dynamics
of the system will be predominantly one-dimensional when
the temperature is smaller than the energy of the lowest
radial excitation, in other words when

kBT � kBT⊥ = �ω⊥. (26)

In Figure 8, we have plotted the number of particles as a
function of temperature according to the expressions for
the degeneracy temperature Td and the phase tempera-
ture Tφ for two different trap anisotropies (a) λ = 1×10−2

and (b) λ = 1×10−3, respectively. In order to understand
the different regimes we have marked the limits given by
the N (TG)

max for the Tonks-Girardeau gas and N (TF )
max for the

1DTF gas obtained in Section 2. The vertical line in both
figures represents the temperature T⊥ given by the one-
dimensionality condition (26) and are T⊥ � 95.6 nK in
Figure 8a and T⊥ � 956 nK in Figure 8b. In the case of
λ = 1×10−2 the anisotropy is simply not enough to permit
the formation of a Tonks-Girardeau gas. It is clear that
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Fig. 8. Number of particles as a function of temperature for
trap anisotropies (a) λ = 1 × 10−2 and (b) λ = 1 × 10−3, re-
spectively. Notice that at smaller trap anisotropies, the Tonks-
Girardeau regime is much bigger.

the decrease in temperature results in a continuous change
from a classical gas to a quantum degenerate one. For suf-
ficiently low number of particles this transformation takes
us from a classical gas through a 1DTF quasicondensate
to a 1D true condensate.

When the number of particles is greater than N
(TF )
max ,

we enter the three-dimensional regime. It has been shown
that for very elongated 3D bosonic systems it is possi-
ble to have a phase fluctuating three-dimensional con-
densate [25]. The regions of 3D quasicondensate and true
condensate can be easily identified in our phase diagram
(Fig. 8).

Figure 8b shows how the system changes when the trap
anisotropy has a smaller value, in this case we chose a trap
anisotropy λ = 1×10−3. The most striking difference is the
possibility to enter the strongly interacting regime marked
in the diagram as the “TG gas” region, in this case at
temperatures between 1 nK and 100 nK and N (TG)

max � 120
particles.
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for a trap anisotropy λ = 1×10−3. For temperatures satisfying
conditions (26) and (27), the system is in the Luttinger liquid
regime.

In Figure 8b there is a boundary between the 1D TF
quasicondensate and the Tonks-Girardeau gas in which
the system starts acquiring fermion properties. Near this
boundary (N � 102) the behaviour of the gas is neither
purely bosonic nor purely fermionic. The connection be-
tween fermion and boson statistics in 1D system is a well-
known fact, and in this respect, the harmonic-fluid ap-
proach has served as a framework to show the similarities
of one-dimensional Bose and Fermi fluids. A very good ex-
ample is the so-called Luttinger liquid, characterised by a
linear spectrum of gapless excitations [26]. Monien et al.
have shown that under appropriate experimental condi-
tions a trapped one-dimensional Bose gas can be described
as a Luttinger liquid [27]. The behaviour of this system is
basically a finite temperature effect which is relevant when

kBT � kBTLL = 2π�ωz

(
3Na

2
√

2Lzλ

)1/3

. (27)

For three-dimensional traps (Lz = L⊥) the gap in the
lowest mode is discernible and Bose-Einstein condensa-
tion is possible. However, when condition (27) is satisfied,
the gapless mode forbids the formation of a condensate
at finite temperatures. Figure 9 shows the same situation
as in Figure 8b (λ = 1 × 10−3), except that in this case
we have decided to plot the temperature as a function of
the number of particles. The two vertical lines correspond
to the number of particles that define the boundaries for
Tonks-Girardeau gas and 1D Thomas-Fermi gases; in this
case NTG ≈ 120 particles and NTF

max ≈ 12000 particles,
respectively. For temperatures satisfying conditions (26)
and (27), the system is in the Luttinger liquid regime. No-
tice that this region spans the area between the strongly
and weakly interacting regimes, which is precisely where
the system acquires a Fermi character. This phase dia-

gram is in agreement with the results presented by Monien
in reference [27] in that at lower temperatures, and with
the appropriate number of particles, the Luttinger liquid
behaviour is washed out by the finite-size gap in the ex-
citation spectrum and Bose condensation is possible once
again.

5 Summary

In this paper, we have addressed the different regimes of
quantum degeneracy in a one-dimensional Bose gas con-
sidering some of parameters that are readily accessible
in the experiment. In particular we concentrated on the
number of particles in the system and the tunability of the
ratio of the trapping frequencies. The number of particles
plays a crucial role in the description of the system and
we have given some expressions for the limiting number of
particles in the different regimes of quantum degeneracy.
The interplay of the number of particles and the tightness
of the trapping potential allows us to have certain control
over the transitions in the system. A clear example is the
fact that at lower number densities is it possible to access
the strongly interacting regime, provided that there is a
tight enough confinement.

We have also presented a classification of these de-
generate regimes in terms of the different length scales
involved in the problem, in other words the interparti-
cle distance Lp, the correlation length Lc and the ra-
dial and longitudinal harmonic oscillator lengths. We
showed that in the boundary where the gas stops having a
three-dimensional behaviour and starts becoming 1D, the
correlation length is equal to the radial extension of the
wavefunction. This turns out to be equivalent to having
an interparticle separation of twice the three-dimensional
scattering length a. In the same way, when we change from
the one-dimensional weakly interacting regime (γ � 1) to
the strongly interacting one (γ � 1), the radial and the
longitudinal extensions of the wavefunction are equal and
the mean interparticle separation is inversely proportional
to the 3D scattering length. The boundaries introduced
here allow us to identify the experimental conditions to
access different regimes, for instance the possibility of at-
taining the Tonks-Girardeau regime without having a 1D
Thomas-Fermi (quasi-)condensate.

Finite temperature in the system introduces some
modifications in the description, for example we can talk
about the quenching of phase fluctuations at sufficiently
low temperatures. We have included the effects of tem-
perature in our phase diagram to have a more complete
picture of the transitions that can be observed in the sys-
tem. In particular, we have discussed the possibility of
observing nontrivial behaviour of an interacting quantum
gas under suitable experimental conditions.
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